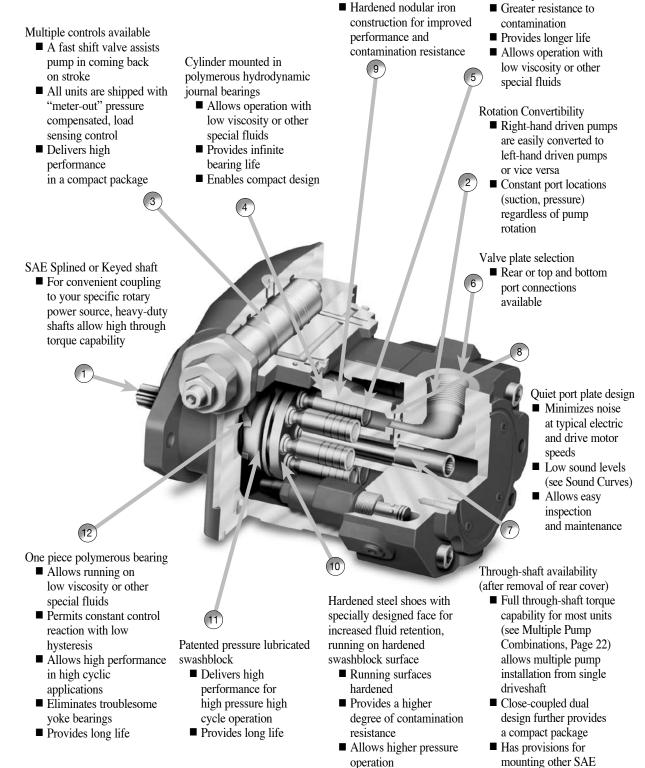


Table of Contents

Performance Assurance	page 3
Features and Benefits	4-5
Specifications	6
Dimensions and Weights	7
Pressure Pick-ups	7
Controls	
Pressure Compensator	8
Standard Load Sense w/Pressure Compensator Override	8
Proportional Electrohydraulic Pressure Compensator	8
Inverse Proportional Electrohydraulic Pressure Compensator	8
Adjustable Load Sense w/Pressure Compensator Override	9
Adjustable Load Sense w/Pressure Bleed-off & Pressure Compensator Override	9
Soft Start Pressure Compensator	9
Remote Pressure Compensator	10
Performance Curves	
Efficiency, Delivery, Horsepower, Etc.	11-13
Sound	14-16
Inlet Suction/Supercharge	17-22
Multiple Pumps	
Pump Combinations	22
Ordering Information	23


PERFORMANCE ASSURANCE – STANDARD WITH EVERY OILGEAR COMPONENT

Every Oilgear product is shipped to you with our Performance Assurance – a corporate commitment to stay with your installation until our equipment performs as specified.

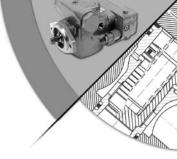
Hydraulic equipment and systems have been Oilgear's primary business since 1921. For decades, we have developed hydraulic techniques to meet the unique needs and unusual fluid power problems of machinery builders and users worldwide, matching fluid power systems to a tremendous range of applications and industries. Our exclusive Performance Assurance program is built upon that strong foundation. As a customer, you also benefit from access to Oilgear's impressive technical support network. You'll find factory trained and field-experienced application engineers on staff at every Oilgear facility. They are backed by headquarters staff who can access the records and knowledge learned from decades of solving the most difficult hydraulic challenges.

When your design or purchase is complete, our service is just beginning. If you ever need us, our Oilgear engineers will be there, ready to help you with the education, field service, parts and repairs to assure that your installation runs smoothly and keeps right on running.

Rugged cylinder design

Hardened cylinder surfaces

size pumps, equipment etc. Can be used to drive


auxiliary devices (see

tions, Page 22)

Multiple Pump Combina-

- operation
 Enables operation with low viscosity or other special fluids
 - Provides long life

Features and Benefits lear

Plus the following not shown in the cross section photo

(13) Isolated front shaft bearing

- Enables operation with low viscosity or other special fluids
- Allows side loading

(14) Multiple capacities in each compact frame size

- Permits selection of volume capacity that most closely match your needs while providing maximum control range
- Unitized one-piece nodular iron housing reduces number of potential leak paths

(15) Totally enclosed

- Impervious to high pressure washdown
- Can be operated in hazardous environments with totally enclosed drive motors

(16)Can be easily mounted in any position

- Easy to install
- Dual case drain available for mounting flexibility

(17)Built in purge port

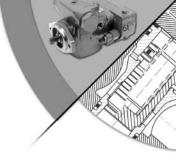
 Aids in purging trapped air from pump during start-up

(18) Designed without gaskets

All mating surfaces and passages designed with o'ring seals to prevent leakage

ear Features and Benef

	RAME IZE	UNIT Size	MAX	etical Imum Cement		red Nuous Sure		MAXIMUM PRESSURE		RATE 0 rpm, ntinuous & 14,7 .0 bar) ondition	MINIMUM INLET PRESSURE psia (bar)			MAXIMUM Speed	at ra	VER PUT ated pres. 10 rpm
_			in ³ /rev.	ml/rev.	psi	bar	psi	bar	gpm	l/min	1200rpm	1500rpm	1800rpm	rpm.	hp	kw
		011	0.66	10,8	3750	258,6	4250	293,1	4.3	16,3	5.0 (,34)	5.3 (,37)	5.6 (,39)	3600	12.8	9,5
	A	014	0.86	14,1	3750	258,6	4250	293,1	5.8	22,0	5.0 (,34)	5.0 (,34)	5.5 (,38)	3600	16.4	12,1
_		022	1.35	22,1	3750	258,6	4250	293,1	9.5	36,0	6.6 (,46)	7.6 (,52)	8.6 (,60)	3600	26.1	19,5
		025	1.55	25,4	3750	258,6	4250	293,1	10.1	38,2	5.0 (,34)	5.0 (,34)	6.5 (,45)	2700	28.8	21,5
		034	2.06	33,8	3750	258,6	4250	293,1	14.1	53,4	5.0 (,34)	5.0 (,34)	5.7 (,40)	2700	37.7	28,1
	В	046	2.83	46,4	3750	258,6	4250	293,1	19.7	74,6	5.0 (,34)	5.0 (,34)	5.7 (,40)	2400	51.9	38,7
		065	4.00	65,5	3750	258,6	4250	293,1	27.9	105,6	5.0 (,34)	5.0 (,34)	6.2 (,43)	2700	71.0	52,9
		075	4.61	75,5	3750	258,6	4250	293,1	31.3	118,5	5.0 (,34)	5.0 (,34)	6.5 (,45)	2700	83.8	62,5
		064	3.88	63,6	3750	258,6	4250	293,1	26.6	100,7	6.1 (,42)	6.2 (,43)	7.3 (,50)	2450	70.2	52,4
	c	076	4.67	76,5	3750	258,6	4250	293,1	32.4	122,6	6.2 (,43)	6.3 (,43)	8.2 (,57)	2450	85.7	63,9
		098	6.00	98,3	3750	258,6	4250	293,1	41.2	156,0	6.7 (,46)	7.1 (,49)	8.3 (,57)	2450	109.2	81,4
		130	7.94	130,2	3750	258,6	4250	293,1	57.8	218,8	6.7 (,46)	7.1 (,49)	8.7 (,60)	2450	150.8	112,5

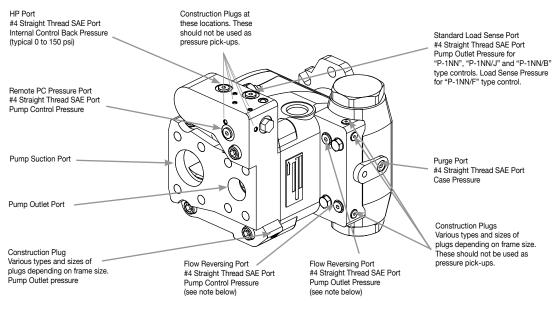

Nominal Performance Data with 150-300SSU viscosity fluids

Olgear Specifications

SINGLE PUMP

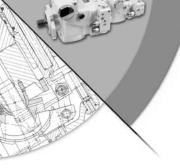
Nominal Dimensions

FRAM	ЛЕ	LEN	GTH	WI	WIDTH		HEIGHT		GHT	
SIZ	E UNIT SIZE	in.	mm.	in.	mm.	in.	mm.	lbs.	kg	FACE MOUNT
Α	011, 014 & 022	7.95	201,9	7.28	184,9	6.63	168,4	37.5	17,0	SAE "A" 2 Bolt
В	025, 034 & 046 065 & 075	9.51 10.00	241,5 254,0	9.00 9.03	228,6 229,4	8.88 8.88	225,6 225,6	73.0 75.0	33,1 34,0	SAE "B" 2/4 Bolt
С	064, 076, 098 & 130	11.91	302,5	10.73	272,5	10.45	265,4	136.0	61,7	SAE "C" 2/4 Bolt


DUAL PUMP

Nominal Dimensions

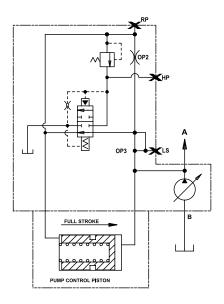
FRAME	LEN	GTH	WIE	отн	HEI	GHT	WEIGHT		
SIZE	in.	mm.	in.	mm.	in.	mm.	lbs.	kg	
A/A	16.20	410,5	7.28	184,9	6.63	168,4	77.0	35,0	
B/A	18.31	465,1		000 4	0.00	005.0	115.5	52,5	
B/B	20.36	517,1	9.03	229,4	8.88	225,6	153.0	69,5	
C/A	20.33	516,4					183.5	83,4	
C/B	22.38	568,5	10.73	272,5	10.45	265,4	221.0	100,5	
C/C	24.29	617,0					282.0	128,2	


PRESSURE PICK-UP POINTS FOR INSTRUMENTATION

Note: Right-hand Pump shown. Pressure pick-ups at Flow Reversing Ports are reversed for Left-hand units.

Pump Outlet Pressure = Pressure at Outlet of Pump

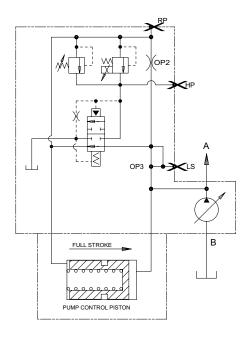
Pump Control Pressure = Pump Outlet Pressure when pump is at full stroke, will be 150 to 200 psi less than Pump Outlet Pressure when pump control(s) are reducing outlet flow.


Pump Controls* PRESSURE*

Pressure Compensator

"P-1NN"

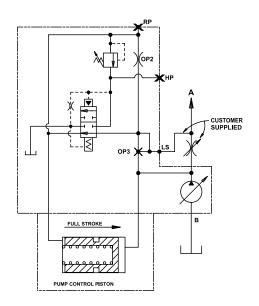
Ensures maximum pump flow until unit


reaches preset control pressure setting and then regulates output flow to match the requirements of the system while maintaining preset output pressure. Pressure can be adjusted from 350 psi (24,1 bar) working pressure up to the rated pressure of the pump.

Proportional Electronic Pressure Compensator

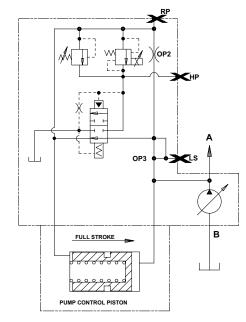
"P-AXX"

Pressure compensator setting increases proportionally with an electrical input signal. Pressure can be adjusted from 350 to 3750 psi (24,1 to 259 bar). A manually adjustable override valve is used to set the maximum pressure settings.

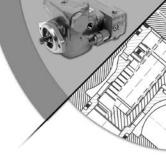


PUMP CONTROLS* Any, single or multiple, combination of remote or load sense controls can be combined with the built-in pressure compensator control if desired.

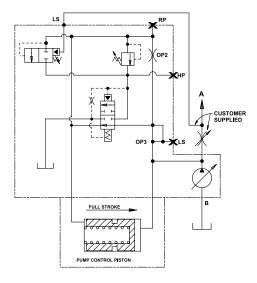
Standard Load Sense w/Pressure Compensator


"P-1NN/F"

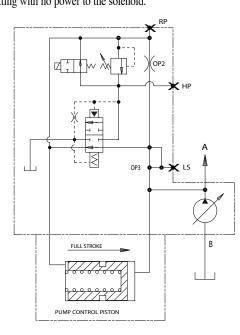
A constant output flow is maintained for a given (customer supplied) flow control valve setting regardless of changes in drive speed and/or working pressure. The load sense differential is 180 psi (12,4 bar) and is not adjustable.


Inverse Proportional "P-BXX" Electronic Pressure Compensator

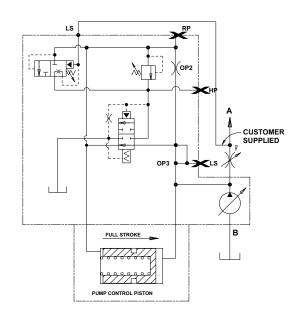
Pressure compensator setting decreases proportionally with an electrical input signal. Pressure can be adjusted from 350 to 3750 psi (24,1 to 259 bar). A manually adjustable override valve is used to set the maximum pressure setting. Generally used for fan drive circuits.


* Be sure system and pumps are protected, with a high-pressure relief valve, against overloads. For detailed circuits of a particular size pump and control combination, contact your Oilgear Representative.

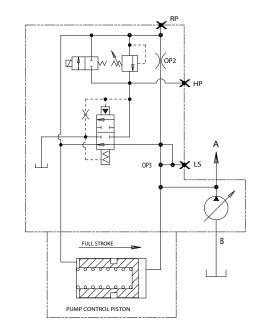
8

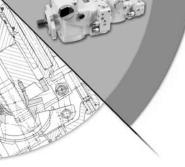

Adjustable Load Sense w/Pressure "P-1NN/J" Compensator Override

Adjustable load sense w/pressure compensator "P-1NN/J." A constant output flow is maintained for a given (customer supplied) flow control valve setting regardless of changes in drive speed and/or working pressure. The load sense differential is adjustable from 180 to 700 psi (12,4 to 48,3 bar).


Soft Start Pressure Compensator "P-CNN"

Pump starts "softly" by going quickly at low pressure to a reduced flow setting, thereby reducing start-up torque requirement. The "P-CNN" control uses a normally open cartridge that will unload the pump at the minimum pressure setting with no power to the solenoid.


Same as "P-1NN/J" except with an internal orifice to vent load sense pressure to drain when the load sense is not active or during shutdown. The load sense differential is adjustable from 180 to 700 psi (12,4 to 48,3 bar).


Soft Start Pressure Compensator "P

"P-KNN"

Pump starts "softly" by going quickly at low pressure to a reduced flow setting, thereby reducing start-up torque requirements. The "P-KNN" control uses a normally closed cartridge that will unload the pump at the minimum pressure setting with the solenoid energized.

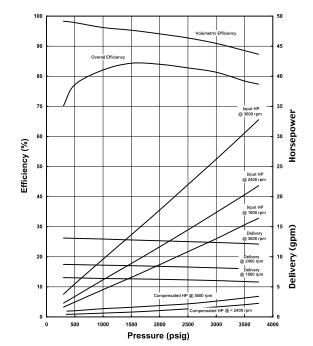


* Be sure system and pumps are protected, with a high-pressure relief valve, against overloads. For detailed circuits of a particular size pump and control combination, contact your Oilgear Representative.

Remote Controls for Pressure Compensator Functions

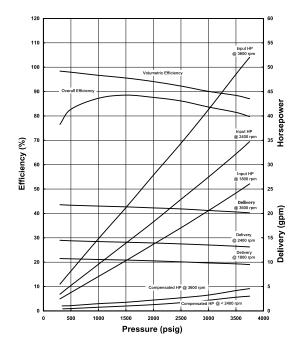
A customer-supplied remote control valve can be easily added to any of the "PVM" pumps allowing pressure adjustment control to be convenient to the operator while the pump may be located convenient to the operated device.

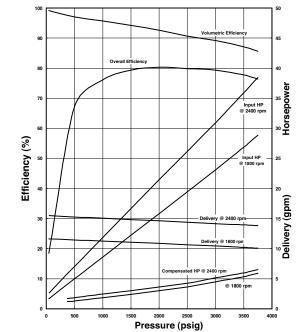
Note: RP (Remote Pressure) lines of multiple pumps cannot be tied together for unloading or controlling with a common remote pressure control valve. A dedicated valve is required for each pump.


oigear Pump Controls*

PERFORMANCE

Performance curves are based on a viscosity of 160 SSU.




100 90 45 all Eff 80 40 70 35 Efficiency (%) put HP Horsepowei 25 20 Input HP @ 2400 rpm 30 Input H @ 1800 rp Delivery (gpm) Delive 3600 i 20 Delivery 2400 rp 10 5 ۰, 2000 3000 3500 4000 500 1000 1500 2500 Pressure (psig)

PVM-022

ilgear Performance Curves

11

PVM-014

10-

100

90

80

70

50

40

30

20

10

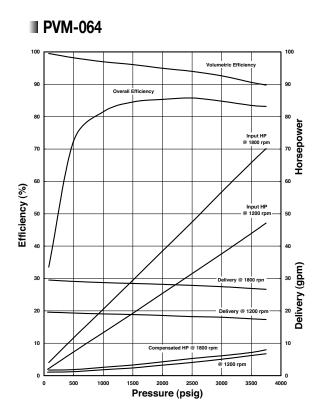
Efficiency (%)

Effici Vo 90 Overall Efficiency Overall Effi ency 90 Lorsepower Input HP @ 2400 rpm 70 60 Efficiency (%) Input HP @ 1800 rpm Input HP @ 2400 rpm 50 50 Input HF @ 1800 rp 40 ه الم Delivery (gpm) 30 Delivery 2400 m 20 @ 1800 rpi Delivery @ 1800 rpm 10 400 rpn @ 1800 rpm 1800 rpm 3000 500 1000 1500 2000 2500 3000 3500 4000 1000 1500 2000 2500 3500 4000 500 Pressure (psig) Pressure (psig)

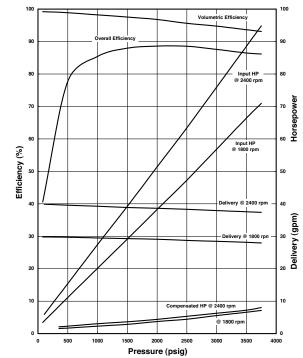
Performance curves are based on a viscosity of 160 SSU. PVM-034

PVM-046

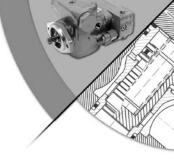
100


²⁰ Horsepower

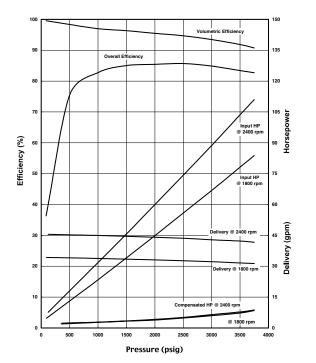
50

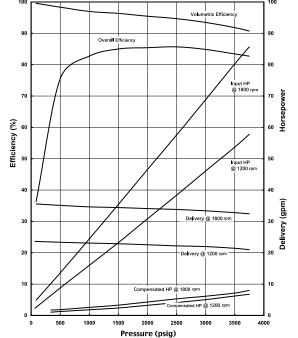

Delivery (gpm)

10

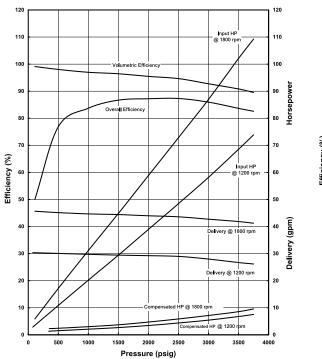

n

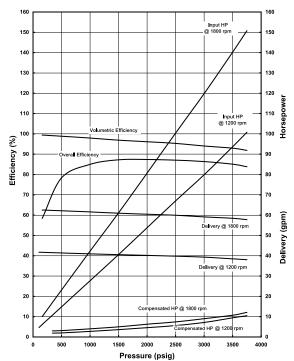
PVM-065



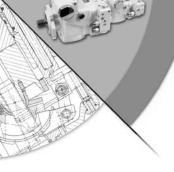

Oilgear Performance Curves 12

Performance curves are based on a viscosity of 160 SSU. **PVM-075**


PVM-076

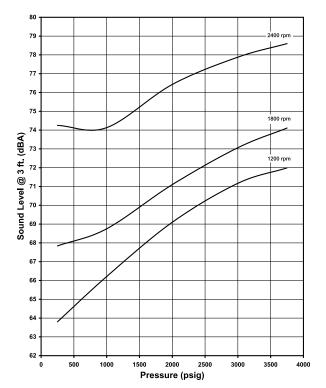


PVM-098

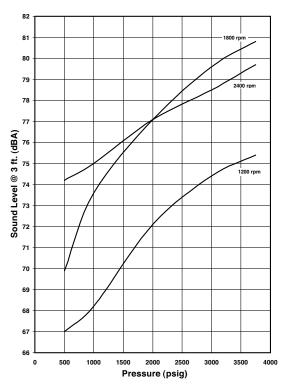


Igear Performance Curves

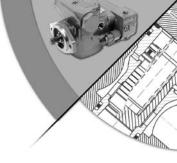
13


SOUND

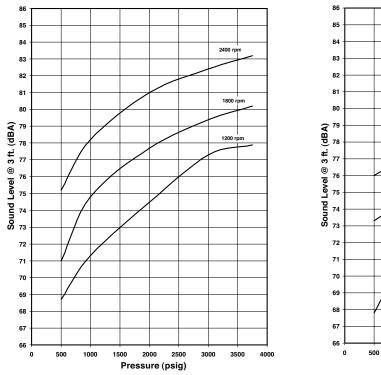
Sound curves are based on a viscosity of 500 SSU.

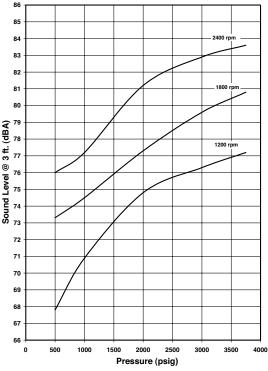

2400 rpm 2400 rpm Sound Level @ 3 ft. (dBA) (dBA) 11 (0 3 ft. (dBA) 00 ri . 800 rpm Sound Level 1200 rpm 1200 rpm Pressure (psig) . 2500 Pressure (psig)

■ PVM-022


PVM-025

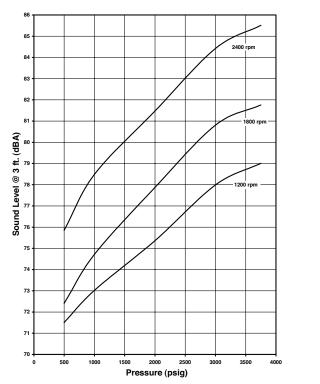
PVM-014

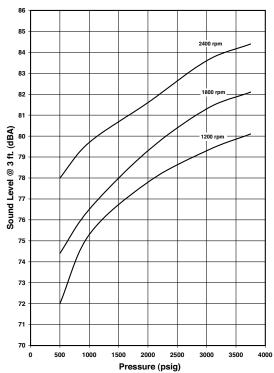

* Be sure system and pumps are protected against overloads with a high-pressure relief valve.


Oilgear Sound Curves

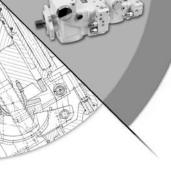
Sound curves are based on a viscosity of 500 SSU.

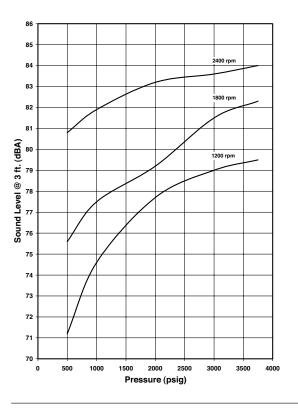
PVM-034

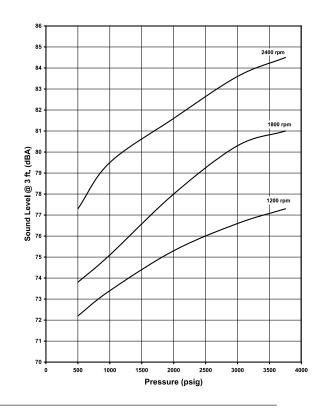


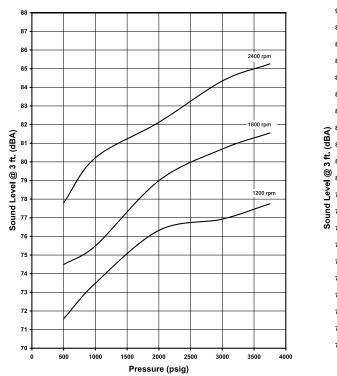


PVM-064

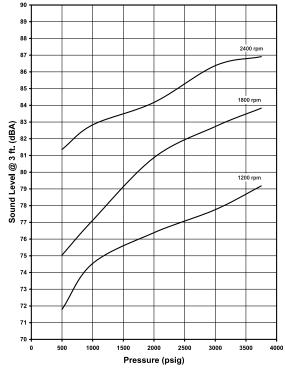

PVM-046


Dilgear Sound Curves


* Be sure system and pumps are protected against overloads with a high-pressure relief valve.


Sound curves are based on a viscosity of 500 SSU.

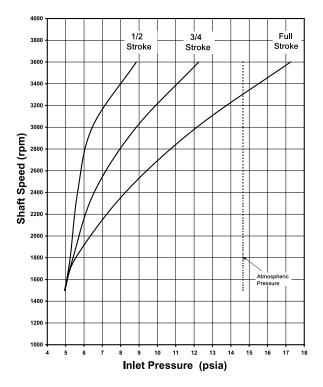
PVM-075



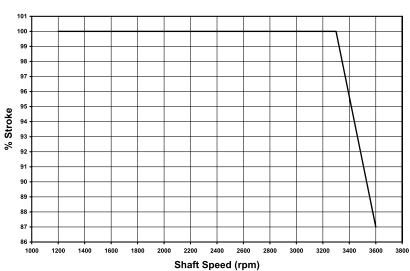
PVM-098

PVM-130

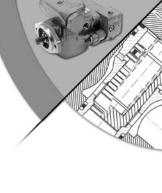
PVM-076

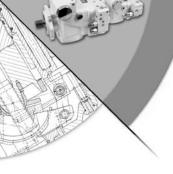

* Be sure system and pumps are protected against overloads with a high-pressure relief valve.

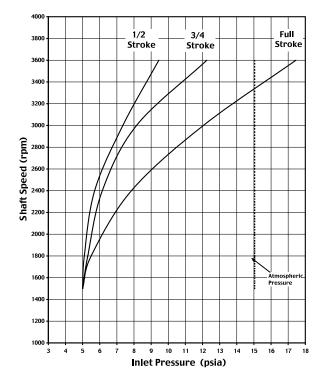
oligear Sound Curves


INLET SUCTION/SUPERCHARGE

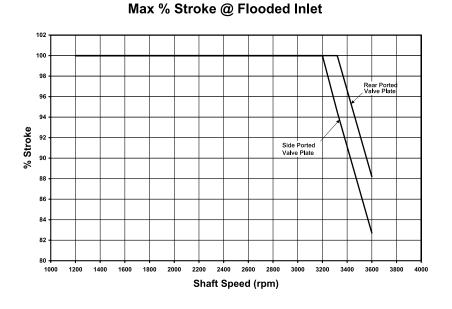
Inlet/supercharge curves are based on a viscosity of 160 SSU.


PVM-011

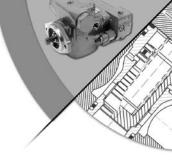


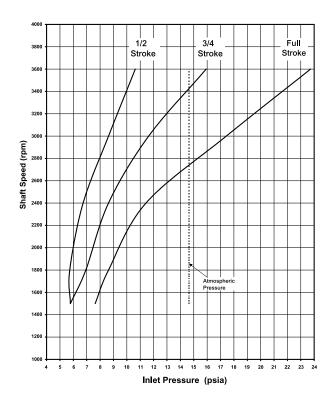


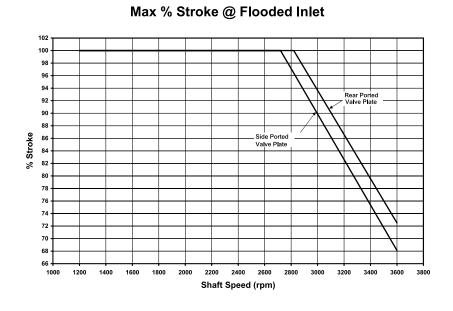
Max % Stroke @ Flooded Inlet



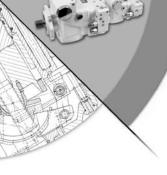
Oilgear Inlet/Suction Curves

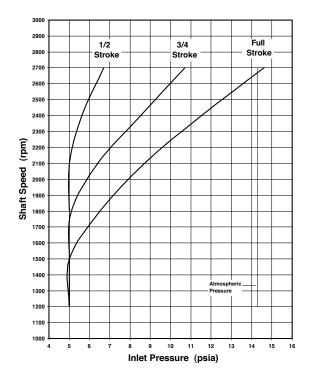



PVM-014

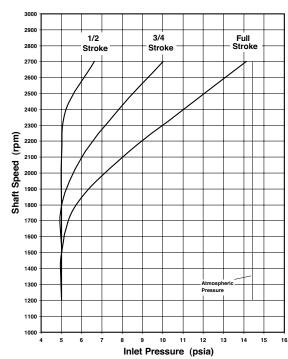

Oilgear Inlet/Suction Curves

18

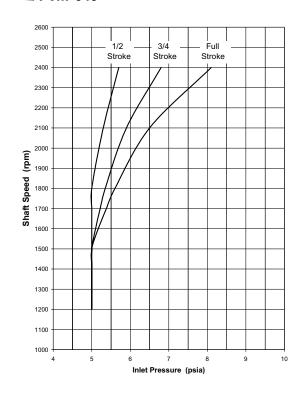


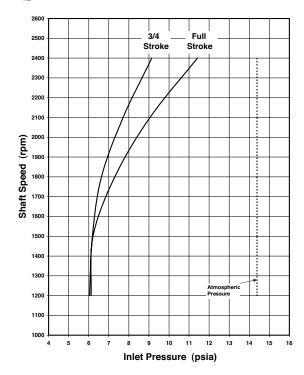


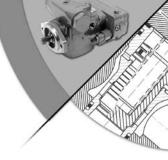
PVM-022



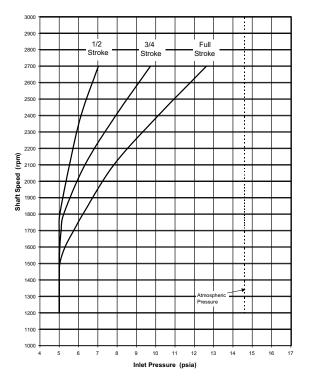
Dilgear Inlet/Suction Curves

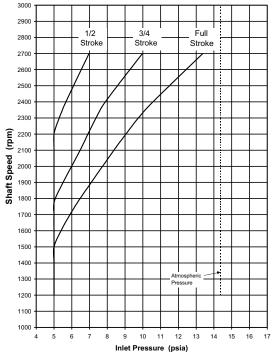


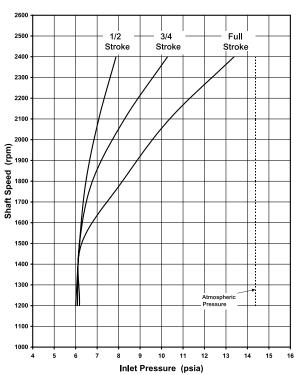

PVM-034

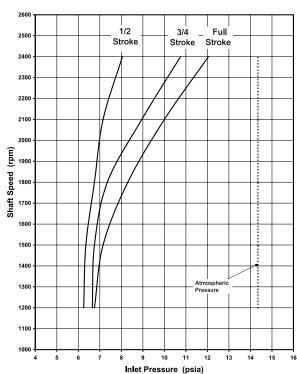

PVM-046

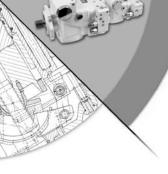
PVM-064

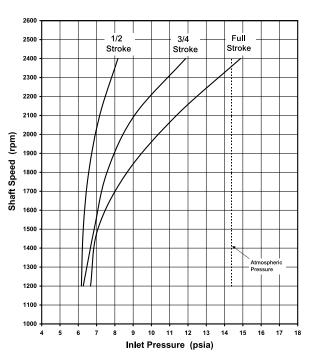



Solgear Inlet/Suction Curves




PVM-098




PVM-076

Dilgear Inlet/Suction Curves

MULTIPLE PUMP COMBINATIONS

Two or more Oilgear "PVM" axial piston variable delivery pumps can be integrally coupled together and driven from a single shaft. In most cases (see Specifications) both pumps can be used at full rated output. Pump deliveries can be combined for large volume circuits or deliveries can be used individually. See the following table and calculations for Allowable Thru-shaft Torque.

How to calculate torque for each pump

T (in. lbs.) = $\underline{\text{Pressure (psi) x Displacement (cu. in./rev.)}}_{5.625}$ *

Add the respective torques for each unit:

- T1 = front pump torque required
- T2 = second pump torque required
- Tn = Additional pump or torque for any other driven device

T1 + T2 + Tn Sum must be less than T max. shown in table

Unit Size	Input Shaft Code	Max Input Shaft Torque (in-Ibs)	Max Torque on Rear Pump Drive Shaft			
011, 014 & 022	All	1290	915			
025, 034 & 046	All	2250	1820			
	Y or S	3500				
065 & 075	В	6400	3060			
	С	7000				
	B or Y	6400				
064, 076, 098 & 130	S	7000	5250			
	С	10500				

* Assumes 90% mechanical efficiency.

HOW TO ORDER

BLOCK NUMBER EXPLANATION	1	2	3	-	4	-	5	6	7	-	8	9	10
Variable Pump Example	Р	V	М	-	011	-	B1	U	В	-	L	D	Α

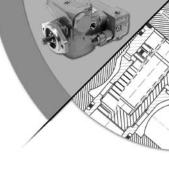
Continued from above

BLOCK NUMBER EXPLANATION	11	-	12	-	13a	13b	13c	13d	14	-	15	-	16	-	17
Variable Pump Example	В	-	Р	-	1	N	Ν	/J	SN	-	AN	-	05	-	xxx

- 1 = UNIT
 - P = Pump
- 2 = TYPE
 - V = Variable
- 3 = DESIGN TYPE M = Pump Series

4 = UNIT SIZE

4 = UNIT SIZE	
011 = 10.8 cc/rev (0.66 cipr)	
014 = 14.1 cc/rev (0.86 cipr)	A Frame
022 = 22.1 cc/rev (1.35 cipr)	
025 = 25.4 cc/rev (1.55 cipr)	
034 = 33.8 cc/rev (2.06 cipr)	
046 = 46.4 cc/rev (2.83 cipr)	B Frame
065 = 65.5 cc/rev (4.00 cipr)	
075 = 75.5 cc/rev (4.61 cipr)	
064 = 63.6 cc/rev (3.88 cipr)	
076 = 76.5 cc/rev (4.67 cipr)	C Frame
098 = 98.3 cc/rev (6.00 cipr)	
130 = 130.2 cc/rev (7.94 cipr)	


- 5 = DESIGN SERIES
 - B1 = A Frame
 - A1 = B Frame
 - A2 = C Frame
- 6 = SAE DESIGN SERIES MODIFIER
 - U = SAE Connector & Mounting
- 7 = SEALS
 - B = Nitrile (standard)
 - V = Viton P = EPDM w/PTFE shaft seal
- 8 = ROTATION
- L = Left-hand (CCW) R = Right-hand (CW)
- 9 = VALVE PLATE TYPE
- S = Rear Ported
 - G = Side Ported
 - D = Thru-Shaft w/ Side-Ports
- 10 = CONNECTION TYPE
 - A = SAE Straight Port
 - F = SAE Flange (B or C frame)

- 11 = SHAFT TYPE See Shaft Table Below.
- 12 = PRESSURE CONTROL P = Pressure Compensator
- 13a = PRESSURE COMPENSATOR OPTIONS
 - 1 = Single Pressure Compensator Setting
 - A = Proportional EH Control
 - B = Inverse Proportional EH Control
 - C = Pressure Compensator w/Normally Open Soft Start
 - K = Pressure Compensator w/Normally Closed Soft Start
- 13b = SOLENOID VOLTAGE
 - N for Pressure Compensator
 - For EH Controls: 2 = 12 VDC
 - 2 = 12 VDC3 = 24 VDC
 - For Soft Start Controls:
 - 0 = 115 VAC
 - 2 = 12 VDC
 - 3 = 24 VDC
- 13c = CONNECTOR
- N for Pressure Compensator For EH & Soft Start Controls: N = No Connector
 - R = DIN (1/2" NPT w/o Lite)
 - S = DIN (PG-11 w/o Lite)
- *6 = DIN Connector Amplifier
- * Available for EH Control Only
- Shaft Table
 - PVM-011/ PVM-025/ PVM-064/-076/ PVM-065/ Shaft -098/-130 Code -014/-022 -034/-046 -075 .875" Keyed 1.00" Keyed 1.25" Keyed Υ .75" Keyed .875" Keyed 1.00" Keyed 1.25" Keyed 1.50" Keyed В SAE A Spline SAE B Spline SAE B Spline SAE C Spline S SAE C-C Spline С SAE B Spline SAE B-B Spline SAE B-B Spline D None None SAE B-B Spline CI 5 SAE C-C Spline CI 5 L None None SAE B Spline CI 5 None

Shaft Note:

Spline Shafts S and C should be used for rigid internal drives such as gear boxes and internally splined electric motors. Spline Shafts D and L should be used for clamped and slip fit flexible couplings. Mating internal splines for all shafts is per ANSI B92.1 tolerance class 5.

- 13d = CONTROL MODIFIER
 - Blank for Pressure Compensator & EH Control /F = Standard Load Sense
 - /J = Adjustable Load Sense **
 - /B = Adjustable Load Sense w/ Bleed-off **
 - ** Consult factory for use with EH Control, not available with Soft Start Control
- 14 = STROKE LIMITER OPTION NN = None
 - SN = Adjustable Max. Volume Stop
- 15 = AUXILIARY ADAPTERS (for thru-shaft) Blank = None (for all rear and side port, non thru-shaft units)
 - CP = Cover Plate
 - AA = SAE A-A Adapter & Coupling (A frame only)
 - AN = SAE A Adapter & Coupling
 - BN = SAE B Adapter & Coupling
 - (B or C frame only) CN = SAE C Adapter & Coupling
 - (C frame only) NN = No Adapter or Coupling
- 16 = GEAR PUMPS
 - Blank = None 05 = 0.488 c
 - 05 = 0.488 cipr07 = 0.672 cipr
 - 10 = 0.976 cipr
 - 14 = 1.403 cipr
 - 20 = 2.015 cipr
- 17 = SPECIAL PUMP MODIFIER (Assigned by factory when necessary)

World Headquarters The Oilgear Company 2300 South 51st Street Milwaukee, WI USA 53219 phone: 414/327-1700 fax: 414/327-0532 www.oilgear.com

For more information about your application or the products in this brochure, please contact your nearest Oilgear facility.

AUSTRALIA Oilgear Towler Australia Pty. Ltd.

BRAZIL Oilgeardo Brazil Hydraulica Ltd.

CANADA The Oilgear Company

FRANCE Oilgear Towler S.A.

GERMANY Oilgear Towler GmbH

INDIA Oilgear Towler Polyhydron Pvt. Ltd. Towler Automation Pvt. Ltd.

ITALY Oilgear Towler S.r.l.

JAPAN The Oilgear Japan Company

KOREA Oilgear Towler Korea Co. Ltd.

MEXICO Oilgear Mexicana S.A. de C.V.

SPAIN Oilgear Towler S.A.

TAIWAN Oilgear Towler Taiwan Co. Ltd.

UNITED KINGDOM Oilgear Towler Ltd.

UNITED STATES OF AMERICA The Oilgear Company

Bulletin 47070-C Revised December, 2006 Printed in USA

